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The problem of the approximate analytic description of the steady
temperature field of two-dimensional regions with axial symmetry is
examined.

Even in the simplest cases of homogeneous media
and uniformly distributed sources, the integration of
the equation of heat conduction for two-dimensional
regions with a complex boundary usually involves fall-
ing back on either numerical or analog techniques.
However, approximate analytic solutions may be pre-
ferable, for example, from the standpoint of estab-
lishing their parametric dependence.

Particularly attractive is the Ritz method, in which
integration of the differential equation is replaced by
the problem of finding the function that minimizes the
functional corresponding to the starting equation.

Thus, we consider a two-dimensional axisymmetric
figure, the cross section of an infinite homogeneous

eylindrical body withuniformly distributed heat sources.

We assume that heat exchange with the surrounding
medium, whose temperature is taken as zero, is
realized in accordance with Newton's law
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where I' is the contour bounding the region in question.
Introducing the notation
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u(r, ¢) = (2)

where T* is the temperature at the center of the rod,
we write the approximate solution of the problem in
the form
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the functional of the problem has the form
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where the coefficients C,_ are determined by the sys-
tem of equations (condition of minimum of the func-
tional)
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The set of functions {u) } can be arbitrarily select-
ed. It is only necessary that it be linearly independent

and that, at the boundary of the region r, = flo), it
satisfies the condition
a
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The latter equation can be represented in the form
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From the integrals of this equation
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where p(g) == exp {5 ;— d (p} and ry is some char-

acteristic dimension, we construct an expression for
uk(r, @ . Any function of the form &(H;,H,) = 0isa
solution of Eq. (11); i.e., for example, from the re-
lation
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Having determined the coefficients { C}} from the
system of linear equations (6), we can find an ex-
pression for T*
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which follows from the balance relation —A$y, Tdl =
L

= g,S for a height interval of unit length. Here, S =
2
= 2i jv)“ (9)d@ is the area of the figure bounded by the
0

curve I'.

In the case of a boundary value problem with the
homogeneous boundary condition Tl = 0 the first
approximation, suitable for figures approximating a
circle, is of interest. The difficulties in selecting a
system of trial functions can be eliminated by as-
suming symmetry of the contour bounding the plane
section.

If, with this assumption, as the system of functions
{ui(r, ¢)}» used to construct the solution in the form
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u(r, )~ chuk (r, @), we take either
k=1
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then the best approximation to the solution is Cyuy(r, ¢}.

Except for C, all the coefficients found from system
(6) vanish upon substitution of u, (r, ¢) in form (15) and

thus
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In fact, in this case system (6), taking the form
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has only the trivial solution Ci. = 0, k =2, 3, 4, ...,
., n, and, consequently, from the condition at the

center of the rod ECk = ] we obtain expression (18).
k=1

However, the value of T* found from (16) gives too
low a result as compared with expression (14), since
it follows from the same balance relation, if the
boundary gradient is replaced by its modulus.

Setting u(r, ¢) = 1 — r?/f%(¢) in (14), we obtain
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We present several examples of approximate ex-
pressions for T* obtained from (18).
1. Rod of elliptical cross section: f(¢) =

=V atcostg -+ bsin*g
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2. Rod with a cruciform profile described by the
equation f(¢) =a +b cos 4¢
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3. Rod with a profile in the form of a regular poly-
gon (with number of isides, n, and radius of circum-
scribed circle, q)
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For example, for a square (n = 4) this formula
gives a result which differs from the exact expression
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by a coefficient 0.88.

It is easy to see that when f(¢) = const expression
(18) gives the value for the temperature at the center
of an infinite circular cylinder.

6 September 1967

547



